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Elasticité - Plasticité 

Exercice 1 :  
Répondez par vrai ou faux aux questions suivantes : 

 Vrai Faux 

a. Dans un système statique où vous tirez sur un élastomère, la 
force que vous exercez est égale, mais de sens inversé, à la 
force exercée par le matériau. 

C’est le principe même de l’action-réaction en statique. 

  

b. La rigidité d’un cadre de vélo est déterminée par la limite 
élastique du matériau utilisé. 

C’est faux. La rigidité est liée au module élastique 𝐸𝐸 d’un matériau et 
reflète sa capacité à se déformer élastiquement lorsqu’il est sollicité 
par une contrainte. Pour une contrainte donnée σ, la déformation 
résultante ε = σ/𝐸𝐸 sera d’autant plus faible que le module élastique 
(et donc la rigidité) est élevé. 

  

c. Le module élastique de la plupart des matériaux diminue 
lorsque la température baisse. 

C’est l’inverse (voir par exemple l’exemple du cours donné pour le 
PMMA) : 𝐸𝐸 augmente usuellement lorsque 𝑇𝑇 baisse. Typiquement, le 
module élastique juste en-dessous du point de fusion d’un matériau 
est environ la moitié de la valeur à température ambiante. 

  

d. Dans une traction élastique uniaxiale, le coefficient de Poisson 
mesure la contraction des dimensions transverses. 

  

e. La limite élastique 𝜎𝜎𝑌𝑌 = 𝜎𝜎𝑒𝑒𝑒𝑒  d’un alliage métallique est 
obtenue par l’intersection entre  la courbe de traction 
uniaxiale 𝜎𝜎(𝜀𝜀) avec une droite parallèle à la tangente à cette 
courbe en 𝜀𝜀 → 0 décalée de ε = 0.2%. 

C’est exact. Comme il est difficile de déterminer le point où  𝜎𝜎(𝜀𝜀) 
commence à dévier d’une relation linéaire, on trace cette parallèle 
décalée de 0.2%.  

,  

f. Lors d’un saut à la perche, la déformation de celle-ci est 
inhomogène : l’intrados est en traction, l’extrados en 
compression. 

C’est précisément l’inverse. En considérant le rayon de courbure de 
la perche, la distance sur l’extrados est lègèrement augmentée par 
rapport à l’axe central de la perche : il s’agit bien d’une traction. Alors 
que l’intrados est caractérisé par une distance plus faible, résultant 
en une compression. 

   

g. L’énergie plastique accumulée dans une pièce par unité de 
volume, qui a été déformée homogènement selon un axe, est 

  



 
Exercice 2 : Acier eutectoïde 
L’acier eutectoïde (voir cours No 6) a une composition en carbone proche de 0.8%pds C. Suivant 
le traitement thermique appliqué, il peut avoir des propriétés mécaniques très élevées, le 
destinant à des applications tels que fils pour cordes de piano ou câbles de téléphériques. 

a. Le module élastique 𝐸𝐸 de cet acier est de 200 𝐺𝐺𝐺𝐺𝐺𝐺. Quel est l’allongement d’un fil de 
1 𝑚𝑚𝑚𝑚2 et de 1 m de long s’il soulève une charge de 10 kg poids ? (On négligera le poids 
du fil en acier). 

Un poids de 10 kg correspond à 98.1 N et donc à une contrainte de traction σ𝑧𝑧𝑧𝑧 égale à 
98.1 N/1 mm2  ≅  98.1 MPa pour ce fil de 1 mm2 de section. En supposant que l’on soit 
toujours dans le domaine élastique, la déformation du fil vaudra : 

donnée, après relâchement de la contrainte, par l’intégrale 
sous la courbe 𝜎𝜎(𝜀𝜀). 

C’est faux. La surface sous la courbe  𝜎𝜎(𝜀𝜀) mesure bien la densité 
d’énergie de déformation, mais totale, soit élastique + plastique. Lors 
du relâchement de la contrainte, l’énergie élastique (qui pourrait être 
récupérée théoriquement) correspond à l’aire du triangle lors de la 
décharge, depuis ε𝑥𝑥𝑥𝑥 à ε𝑅𝑅 (slide 38). Donc la densité d’énergie 
plastique, stockée essentiellement sous forme de défauts du 
matériau (dislocations pour les métaux, réarrangement des chaînes 
et formation de microfissures dans les thermoplastiques), est la 
surface sous la courbe  𝜎𝜎(𝜀𝜀) diminuée de la surface du triangle lors 
du relâchement de la contrainte. 

h. Si l’on dépasse la limite élastique d’un alliage métallique en 
traction uniaxiale, puis qu’on décharge celui-ci, sa nouvelle 
limite élastique a été augmentée alors que le module élastique 
reste le même. 

  

i. Une dislocation vis dans un alliage métallique résulte d’un 
cisaillement perpendiculaire à la ligne de dislocation. 

Cettre description est celle d’une dislocation-coin où le vecteur de 
Burgers 𝑏𝑏�⃗  est perpendiculaire au vecteur 𝑡𝑡 de la ligne de dislocation. 
Pour une dislocation vis, le vecteur 𝑏𝑏�⃗  est parallèle à la ligne de 
dislocation. 

  

j. Lors de la déformation plastique en traction du polyéthylène 
(thermoplastique), la dernière étape avant sa rupture 
correspond à solliciter les chaînes selon les liaisons fortes C-C. 

C’est exact. Lors de la déformation plastique d’un thermoplastique, 
les chaînes s’alignent progressivement dans l’axe de la contrainte, 
créant ainsi des microfissures (crazes). La striction du matériau 
progresse à contrainte presque constante, jusqu’à ce que toutes les 
chaînes soient alignées avec l’axe de la traction : on sollicite alors 
directement les liaisons fortes des chaînes, ce qui augmente la 
contrainte juste avant la rupture du matériau (voir slide 44). 

  



ε𝑧𝑧𝑧𝑧 =
σ𝑧𝑧𝑧𝑧
𝐸𝐸

=
98.1 × 106 Pa
200 × 109 Pa

= 0.0491% < 0.2% 

On est donc toujours bien, comme supposé pour appliquer la loi de Hooke, dans le 
domaine élastique.  

L’allongement du fil, soit Δ𝐿𝐿 = ε𝑧𝑧𝑧𝑧𝐿𝐿, où 𝐿𝐿 = 1 m, sera donc de 0.491 mm. 

b. Calculez l’énergie de déformation subie par le fil.  
L’énergie de déformation du fil 𝑊𝑊 est donnée par le produit de la densité d’énergie, 𝑤𝑤 =
0.5𝜎𝜎𝑧𝑧𝑧𝑧𝜀𝜀𝑧𝑧𝑧𝑧 J/m3, multipliée par le volume du fil 𝑆𝑆𝑆𝑆. On a donc : 

𝑊𝑊 = 𝑤𝑤𝑤𝑤𝑤𝑤 = 0.5σ𝑧𝑧𝑧𝑧ε𝑧𝑧𝑧𝑧𝑆𝑆𝑆𝑆 = 0.5 × (98.1 × 106 Pa) × (4.91 × 10−4) × (10−6 m3)
= 2.41 × 10−2 J 

c. Le coefficient de Poisson de cet acier, comme la plupart des métaux, est de 0.3. Que 
vaut la section du fil avec la charge du point b. 

Le coefficient de Poisson ν mesure la contraction d’une dimension transverse lors d’une 
traction uniaxiale (ici selon 𝑧𝑧), soit ε𝑦𝑦𝑦𝑦 = ε𝑥𝑥𝑥𝑥 = −ν ε𝑧𝑧𝑧𝑧. La section du fil soutenant la charge 
du point b vaut donc : 

𝑆𝑆 = π𝑅𝑅2 = π𝑅𝑅02(1 − ν 𝜀𝜀𝑧𝑧𝑧𝑧)2 ≅ S0(1 − 2νε𝑧𝑧𝑧𝑧) = 0.9997 mm2 

d. La limite élastique 𝜎𝜎0.2 d’un tel acier après un traitement thermique est 1'000 MPa. 
Quelle est la charge maximale qu’il peut supporter si l’on veut rester dans le domaine 
élastique ? 

La contrainte maximale valant 1′000 MPa, la charge maximale sera 𝐹𝐹 = σ0.2 × 𝑆𝑆, soit 1′000 N 
ou 102 kg.  

e. On charge à nouveau ce fil, mais cette fois avec un poids de 150 kg : on remarque que 
le fil sous charge a une longueur de 1.02 m. Quelle longueur aura-t-il une fois le poids 
enlevé ? 

La contrainte σ𝑧𝑧𝑧𝑧 = 𝑚𝑚𝑚𝑚/𝑆𝑆 = 150 × 9.81/10−6 N/m2 = 1′472 MPa a dépassé la limite 
élastique. La déformation totale à cet instant vaut ε𝑧𝑧𝑧𝑧 = ε𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 + ε𝑧𝑧𝑧𝑧

𝑝𝑝𝑝𝑝 = (1.02 − 1)/1 = 2%. Lors 
de la décharge, qui se fait avec le même module élastique 𝐸𝐸, la composante élastique peut 
être déduite : ε𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 = σ𝑧𝑧𝑧𝑧/𝐸𝐸 ≅ 0.74%. Il subsistera alors la déformation plastique du fil soit 
(ε𝑧𝑧𝑧𝑧 − ε𝑧𝑧𝑧𝑧𝑒𝑒𝑒𝑒 ) = 1.26% : le fil restera donc déformé plastiquement avec une longueur de 
1.0126 m. (A noter que la déformation plastique se faisant à volume constant, sa section est 
aussi réduite d’autant.) 

 Question facultative : Que se passerait-il si au lieu de soulever (progressivement) le poids de 
10 kg, on suspendait ce poids au fil alors qu’il n’était pas chargé. 
Lorsque l’on soulève le poids, la force exercée par le fil progresse (et donc la contrainte), de 0 
jusqu’à la valeur de 98.1 N selon le calcul fait aux points précédents, instant où le poids est 
alors effectivement soulevé. On suit donc bien la loi de Hooke et la densité d’énergie élastique 
impliquée correspond donc bien à l’aire du triangle. Il en irait de même si on suspendait 
progressivement au fil des petits éléments de poids, jusqu’à la valeur de 98.1 N, de manière à 
conserver à chaque incrément de poids une situation dite « quasi-statique ». 



Mais comme pour un ressort, si l’on suspend d’un coup le poids de 10 kg, on n’est plus en 
régime statique : il y a une accélération de cette masse jusqu’à une distance maximale où 
l’énergie cinétique va devenir nulle. A cet instant, le changement d’énergie potentielle 𝑚𝑚𝑚𝑚Δℎ 
doit être égal au travail (supposé élastique) fourni par le fil jusque-là. On aurait donc : 

𝑚𝑚𝑚𝑚Δℎ =
1
2
𝐸𝐸 �

Δℎ
𝐿𝐿
�
2

𝑆𝑆𝑆𝑆 ⇒  Δℎ = 2
𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑆𝑆

= 0.981 𝑚𝑚𝑚𝑚 

soit le double de la valeur calculée au point (a). La force exercée par le fil à cette position 
extrême étant le double de la valeur calculée pour une situation statique, la masse va 
remonter, puis redescendre… et osciller ainsi autour de la valeur calculée précédemment pour 
la longueur du fil sous charge. Après dissipation de l’énergie cinétique (par frottement avec 
l’air mais aussi par dissipation à l’intérieur du matériau), la position d’équilibre statique sera 
celle calculée précédemment (pour autant que le matériau n’ait pas « changé » par la création 
de défauts). 
 
Exercice 3 : Choix d’un matériau 
Quel matériau choisiriez-vous, sur la base de quels arguments, pour les applications 
suivantes : 

a. L’enveloppe d’un minisatellite peu sollicitée mécaniquement ou un bras d’un robot 
Delta subissant de très grandes accélérations. 

Pour les deux applications, un critère important est de minimiser la masse : pour le satellite, 
chaque kilogramme envoyé dans l’espace a un coût très élevé ; pour le bras d’un robot Delta, 
c’est la rapidité de mouvement, avec des accélérations de 30 ou 50 g, qui requiert de minimiser 
l’inertie, donc la masse. Pour les deux, il faut également une rigidité élevée. Ces deux critères 
orientent le choix vers un polymère renforcé par fibres de carbone. 

b. Un composant situé à l’avant d’une voiture pour absorber l’énergie en cas de choc. 
L’énergie cinétique d’une voiture de 1'500 kg roulant à 20 m/s (72 km/h) est ½mv2 =
300′000 J. Pour absorber cette énergie en cas de choc, et protéger ainsi l’habitacle, il faut un 
composant dont l’énergie de déformation sous la courbe σ(ε) est maximum. Pour cela, il faut 
une excellente résistance mécanique (axe vertical), mais également une bonne ductilité (axe 
horizontal). Les deux métaux pourront donc convenir, avec un petit avantage pour l’acier, 
malgré son poids emporté dans le véhicule plus élevé. 

Si l’on approxime la densité d’énergie 𝑤𝑤 de déformation plastique par σ𝑒𝑒𝑒𝑒ε𝑅𝑅, on obtient 
80 × 106 J/m3 pour l’alliage d’Al et 120 × 106 J/m3 pour l’acier. Si l’on voulait absorber toute 
l’énergie cinétique du véhicule, il faudrait théoriquement un volume (déformé uniformément) 
de 3.75 litres et 2.5 litres, respectivement.  

c. Une boîte-boisson dont les parois latérales doivent supporter la compression lorsque 
ces boîtes sont empilées en palettes, mais pouvoir être formées par déformation. 

Pour pouvoir être formées, il faut des matériaux ductiles, donc un alliage d’aluminium ou un 
acier. Par ailleurs, lorsqu’un grand nombre de boîtes-boisson sont empilées en palettes, la 
contrainte de compression σ𝑧𝑧𝑧𝑧 que les parois des canettes subissent dépend directement du 
poids des canettes empilées au-dessus divisé par l’épaisseur 𝑒𝑒 des parois. Leur déformation 



(en compression) valant dans le régime élastique  σ𝑧𝑧𝑧𝑧/𝐸𝐸, la déformation en compression est 
directement proportionnelle à (𝐸𝐸𝐸𝐸)−1.  

Par ailleurs, le poids à vide d’une boîte-boisson est proportionnel à ρ𝑒𝑒. Pour une épaisseur 
fixée, un poids minimum (ρ minimum) pour une déformation minimum (𝐸𝐸 maximum) revient 
à maximiser 𝐸𝐸/ρ. Or, les deux métaux sont équivalents : 𝐸𝐸/ρ = 70′000/2′800 =
25 MPa m3/kg pour l’alu, et 𝐸𝐸/ρ = 200′000/8′000 = 25 MPa m3/kg pour l’acier. De fait, 
on trouve des boîtes-boisson en acier (notamment pour la bière) et en alu (boissons sucrées). 

d. Un cadre rigide de vélo léger. 
Une grande rigidité (𝐸𝐸 élevé) et une masse spécifique faible font d’un cadre en polymère 
renforcé par des fibres de carbone le choix naturel pour un vélo de compétition. 

e. Un pédalier de vélo. 
Pour la même raison que celle évoquée pour le point d, on trouve dans le commerce des 
pédaliers en polymère renforcés par des fibres de carbone. Si l’on devait choisir un métal (pour 
éviter par exemple une rupture éventuelle, donc avoir une plus grande ténacité), l’aluminium 
sera préféré à l’acier car en flexion, c’est le rapport 𝐸𝐸1/2/𝜌𝜌 qui minimise simultanément la 
flexion et le poids (voir slide 27 du cours). La forte masse spécifique de l’acier pénalise ce 
matériau devant l’aluminium lorsqu’il est utilisé en flexion (ou en torsion). De fait, de 
nombreux pédaliers sont effectivement en alliages d’aluminium. 

f. Un matériau ultra-dur pouvant être utilisé dans les systèmes de freinage ou comme 
abrasif. 

Un matériau ayant une limite élastique très élevée ne subira que peu de dommages lorsqu’il 
est frotté contre un matériau ayant une faible limite élastique. De fait, on utilise le carbure de 
silicium comme abrasif de polissage ou pour le frottement d’un système de freinage (usure 
faible). 

 
Exercice 4 : Capillaire sous pression 
Un petit capillaire en polypropylène (PP) de rayon 1 𝑚𝑚𝑚𝑚 et d’épaisseur 0.1 𝑚𝑚𝑚𝑚 contient un 
fluide sous une pression de 105 𝑃𝑃𝑃𝑃 pour un système de micro-fluidique. La pression interne 
induit une contrainte dans la paroi du capillaire comme indiqué sur le dessin ci-dessous, et 
donc une déformation de son rayon (on prendra 𝐸𝐸 =  1 𝐺𝐺𝐺𝐺𝐺𝐺 pour le PP).   
Considérez une petite portion du capillaire, d’ouverture 2𝜃𝜃 ≪ π et de longueur 𝑙𝑙. Cela définit 
un élément de surface 𝛥𝛥𝛥𝛥. 

a. Calculez 𝛥𝛥𝛥𝛥 pour trouver la force normale exercée par la pression sur la paroi du 
capillaire. 

L’élément d’arc d’ouverture 2θ a une longueur 2𝑅𝑅θ et l’élément de surface vaut donc 2𝑅𝑅θ × 𝑙𝑙. 
La pression exercée en tout point de cette surface est normale à la surface. Comme l’ouverture 
2θ est petite, il n’est pas nécessaire de projeter chacun des éléments de force s’appliquant sur 
la surface Δ𝑆𝑆 et la force résultante vaudra donc simplement : 

𝑝𝑝(2𝑅𝑅θ × 𝑙𝑙) 

 



 

b. Calculez la force nécessaire 𝐹⃗𝐹, tangentielle au capillaire, permettant de contrebalancer 
la force normale. 

Pour équilibrer cette force normale due à la pression, des forces 𝐹⃗𝐹 tangentielles à la paroi du 
capillaire sont exercées par le matériau sur cet élément de paroi. Chacune d’elles a une 
composante selon la normale 𝑛𝑛�⃗  à l’élément de surface donnée par :  -�𝐹⃗𝐹� × sin𝜃𝜃 ≅ −�𝐹⃗𝐹� × 𝜃𝜃, 
puisque 𝜃𝜃 est faible. Le capillaire étant à l’équilibre, on a donc : 

−2�𝐹⃗𝐹� × 𝜃𝜃 +  𝑝𝑝(2𝑅𝑅θ × 𝑙𝑙) = 0  ⇒   �𝐹⃗𝐹� =  𝑝𝑝(𝑅𝑅 × 𝑙𝑙) 

c. En divisant cette force 𝐹⃗𝐹 par la surface du capillaire sur laquelle elle s’exerce, soit 
(𝑒𝑒 × 𝑙𝑙), vous trouvez ainsi la contrainte tangentielle dans la paroi du capillaire. Comme 
cette contrainte est circonférentielle, elle est dénommée 𝜎𝜎𝜃𝜃𝜃𝜃  (« hoop stress »). 

La contrainte tangentielle 𝜎𝜎𝜃𝜃𝜃𝜃  étant le rapport de la force �𝐹⃗𝐹� divisée par l’élément de paroi 
d’épaisseur 𝑒𝑒 et de longueur 𝑙𝑙, on a : 

𝜎𝜎𝜃𝜃𝜃𝜃 =
�𝐹⃗𝐹�
𝑒𝑒 × 𝑙𝑙

=
𝑝𝑝(𝑅𝑅 × 𝑙𝑙)
𝑒𝑒 × 𝑙𝑙

= 𝑝𝑝
𝑅𝑅
𝑒𝑒

 

Le résultat semble logique : la contrainte dans la paroi du capillaire augmente avec la pression 
à l’intérieur, avec son rayon, et avec l’inverse de son épaisseur. 

d. Connaissant cette contrainte 𝜎𝜎𝜃𝜃𝜃𝜃  et le module élastique 𝐸𝐸 du PP, calculez la déformation 
de la circonférence du capillaire, et donc l’augmentation de son rayon. 

On peut imaginer que la circonférence du capillaire (2π𝑅𝑅) va augmenter avec cette contrainte 
tangentielle, comme l’est un élément parallélépipédique sous l’action d’une contrainte σ𝑧𝑧𝑧𝑧. La 
déformation suit la loi de Hooke et on peut écrire : 

εθθ =
2𝜋𝜋(𝑅𝑅 + Δ𝑅𝑅) − 2𝜋𝜋𝜋𝜋

2𝜋𝜋𝜋𝜋
=
Δ𝑅𝑅
𝑅𝑅

=
σθθ
𝐸𝐸

=
𝑝𝑝𝑝𝑝
𝐸𝐸𝐸𝐸

 

Application numérique :  

𝜎𝜎𝜃𝜃𝜃𝜃 = 𝑝𝑝
𝑅𝑅
𝑒𝑒

= 105 Pa
1 mm

0.1 mm
= 106 Pa 

εθθ =
Δ𝑅𝑅
𝑅𝑅

=
σθθ
𝐸𝐸

=
106 Pa
109 Pa

= 10−3    ⇒    Δ𝑅𝑅 = 10−3 mm = 1 μm 
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